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According to definition (2) of f(2).
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Since O < a < |. the values of these two integrals cvidently tend to 0 as p and R
tend 0 ) and oc. respectively. Hence. if we let p tend to 0 and then R tend to o¢ in
cquation (4), we arrive at the result
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Using the variable of integration x here. instead ol r. as well as the expression

) ST laT
sinar =
2
we arnive at the desired result:
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EXERCISES

1. Use the function f(z) = (¢ — ¢/”)/z% and the indented contour in Fig. 108 (Sec. 89)
to derive the integration formula

/'\ cos(ax) — cos(bx)
0

b1 4
= dyv = —(b — a) (a=>0.Hb=0).
X- 2

‘Then. with the aid of the trigonometric identity 1 — cos(2x) = 2 sin® x. point out how it

follows that
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2. Derive the integration tormula

ol

by integrating the function

. = 12 o' 120 log T 37
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over the indented contour appearing in Fig. 109 (Sec. 90).
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3. Derive the integration formula obtained in Exercise 2 by integrating the branch

-2 ‘,n—l..'ano_u:_

f() = = = — (21 > 0.0 < argz < 21)
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of the multiple-valued function : /(:2 + 1) over the closed contour in Fig. 110
(Sec. 91).
4. Derive the integration formula
/\ JX I 2t Ja- Vb
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N — — a>h >0
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using the function
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J@©) = = (Jz2) > 0.0 < argz < 21)
(z+a)z+h) (+a)z+b)

and a closed contour similar to the one in Fig. 110 (Sec. 91). but where
p<b<u<R

5. The beta function is this function of two real variables:

[

B(p.gq)= / "' =t dr (p>0.qg>0).
JA0)

Make the substitution 7 = 1/(x + 1) and use the result obtained in the example in Sec. 91

to show that

Bip.l - p)= (0<p<l).

sin (po)

6. Consider the two simple closed contours shown in Fig. 111 and obtained by dividing
into two pieces the annulus [ormed by the circles C,, and Cy in Fig. 110 (Sec. 91). The
legs L and — L of those contours are directed line segments along any ray argz = ).
where 1 < Oy < 31/2. Also. I",, and y,, are the indicated portions of C,,. while [y and
yx make up Cg.

FIGURE 111
(@) Show how it follows from Cauchy’s residue theorem that when the branch

, o7 0 bid 3
= I s ) -2 < ara- < o
Ji(2) T [z] > 0. 5 <argr < 3
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at ¢ and (. respectively. The singularity 2 = 1/« 1s. of course. exterior to the circle C
since Ja| < 1.
Inasmuch as

2) 2
f(2) = 4 where ¢ (2) = ——.
I-ua (az — 1)z°
118 casy (o see that
4
+ |
(10) B =dla) = ———
(a- — Na-

The residue B> can be found by wnting

, $(2) d 41
(2) = —— where @)= :
/ . ere ¢ (z—=a)az = 1)
and straightforward differentiation reveals that
: +1
(I By=¢'y="""
a-

Finally. by substituting the residues (10) and (11) into expression (9), we arrive
at the integration formula (8).

EXERCISES

Use residues to establish the following integration formulas:

1/3’ do k¢
“Jo S+4sin0 37

= do
2. —_— Y = \/z’(.
-/—,7 | +sin~ 0
3 27 cos 30 dO 37
“Jo 5 —4dcos20 8
4 /h e S b
at = -l <u < .
Jo L +acost /)1 -4
- i (I(/ o
S / T = = (u>1).
Jo (a +cos0)- ( Y )»

T, Q!
6. / sn0dl = ——=x (n=1.2....).
Jo 27 (n!

93. ARGUMENT PRINCIPLE

A funcuon [ is said to be meromorphic in a domain D if it is analytic throughout
D cxcept for poles. Suppose now that f is meromorphic in the domain interior to a
positively oriented simple closed contour € and that it is analytic and nonzero on C.
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EXERCISES
1. Let C denote the unit circle || = 1. described in the positive sense. Use the theorem in
Sec. 93 1o determine the value of A¢-arg f(2) when
(a) f(z)=:% (hy f(z)=1/z% (¢) f(z)=(2 - 1)/

Ans. (a) 410 (D) =470 (¢) 8.
Let f be a function which is analytic inside and on a positively oriented simple closed
contour C. and suppose that f(2) is never zero on C. Let the image of € under the
transformation u* = f(z) be the closed contour I" shown in Fig. 114, Determine the
value of A¢ arg f(z) from that figure: and. with the aid of the theorem in Sec. 93,
determine the number of zeros. counting multiplicities. of f interior to C.

Ans. 6312 3.

L

7
FIGURE 114

Using the notation in Sec. 93. suppose that I” does not enclose the origin w: = () and that
there is a ray from that point which does not intersect I'. By observing that the absolute
vialue of A¢ arg f(2) must be less than 21 when a point - makes one cycle around €
and recalling that A, arg f(2) is an integral multiple of 2:7. point out why the winding
number of I" with respect to the origin u* = () must be zero.
Suppose that a function f is meromorphic in the domain D interior to a simple closed
contour C on which / is analyvtic and nonzero. and let Dy denote the domain consisting
of all points in D except for poles. Point out how it follows from the lemma in Sec. 28
and Exercise 11, Sec. 83, thatif /(2) is not identically equal to zero in Dq . then the
zeros of fin D are all of finite order and that they are finite in number.

Suggestion: Note that it a point 2, in D is a zero of [ that is not of finite order. then
there must be a neighborhood of 2 throughout which f(2) is identically equal to zero.

Suppose that a function f is analytic inside and on a positively oriented simple closed
inside C. where cach z¢ is of multiplicity mi. then
. i
/() %
/ - dz = 2mi Z/ru:,<.
Jeo () e

|Compare with equation (8). Sec. 93. when P> = () there. |

Determine the number of zeros. counting multiplicities. of the polynomial
(ay 2% —3z0+ 20 =220 by 221 - 2202222 22490 (o) P-4 e - L
inside the circle 2] = 1.

Ans. (a) 4: (b) 0. (¢) 3.
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Determine the number of zeros. counting multiplicities. of the polynomial
(@) 24 =221 49224210 (b)) 43424
inside the circle |z] = 2.

Ans. (a) 2: (b) 5.

Determine the number of roots. counting multiplicities, of the equation

264zl =0

—_

inthe apnulus | = |2] < 2.

Any. 3.
Show thatif ¢ is a complex number such that |¢] > e. then the equation ¢’ = ¢ has i
roots. counting multiplicities. inside the circle || = 1.

Lettwo functions f and ¢ be as in the statement of Rouché’s theorem in Sec. 94, and let
the orientation of the contour € there be positive. Then define the function

I (o) + e
(1) = . ',_() ‘u)d: O=<r=1
ai Je f2y+1g2)

and follow these steps below to give another proof of Rouché’s theorem.

() Pointout why the denominator in the integrand of the integral defining & (1) is never
zero on C. This ensures the existence of the integral.

(h) Letr and 1, be any two points in the interval 0 = 1 < | and show that
/ e - /e )

— — dz]|.
Je (f +1g)f +1y8)

re-1'g o 8= 1l
S+ + )] ™ (f1 =187
at points on C. show that there is a positive constant A. which is independent of ¢
and rq. such that

[t = Il

[P(r) — Pay)| =

2t

Then. after pointing out why

|P(1) — Pyl <= Al — 1l

Conclude from this inequality that d(7) is continuous on the interval 0 < r = |,

(¢) By referring to equation (8). Sec. 93. state why the value of the function @ is. for
cach value of 1 in the interval 0 < 1 < |, an integer representing the number of
zeros of f(z) + rg(2) inside C. Then conclude from the fact that & is continuous.
as shown in part (h). that f(z) and f(c) + g(2) have the same number ol zeros.
counting multiplicities. inside C.

INVERSE LAPLACE TRANSFORMS

Suppose that a function F of the complex vanable s is analytic throughout the finite s
planc except for a linite number of isolated singularitics. Then let L, denote a vertical

line

scgment fromys =y — i Rtos = y - i R. where the constant y is positive and

large cnough that the singulariues of F all lie to the leftof that segment (Fig. 115). A



